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t6tra~dre d'oxyg6nes. Cette pr6f6rence pour une position 
t6tra6drique est telle que Zn ne peut  entrer dans la con- 
s t i tut ion des boroferrites oil tous les voisinages sent  
octa6driques. 

Nous terminons par  un  r6sum6 (Tableau 1) des groupes 
spaoiaux et param6tres des boracites 6tudi6s jusqu'ici,  
Les r6sultats des chercheurs japonais y sent  inclus. 
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Tableau 1. Groupes spaciaux et param~tres des boravites 

Formule Groupe spatial a (A.) b (A.) c (A.) v (A. a) d 
B2Oa,Fe~Oa,4FeO D~a-Pbam 9-44 12.26 3.065 354.7 4.808 
B2Os,Fe~Os,4CoO 9"35 12.28 3.03 348-7 5.018 
B~Oa,Fe~Oa,4~iO 9.248 12.26 3.01 341.3 5-107 
B~Oa,F%Oa,4CuO 9"397 12.02 3" 13 353"5 5" 112 
B~Oa,Fo~Oa,3MgO,(Fo, Mg)O (ludwigito x) 9" 14 12-45 3"05 347 3"86 
B~Oa,Fo~Oa,2MgO (ludwigite II) D~-Pnam 9.258 9.427 3.104 270.9 3.78 
B~Oa,Fo2Oa,2FoO 9.243 9.468 3.158 276-4 4.45 
B~Oa,Fe2Oa,2CoO 9.243 9.39 3.135 272.1 4"60 
B~O3,Fo~O3,2NiO 9.141 9.351 3.047 260.4 4-80 
B~Oa,TiO~,3MgO (warwickito) 9.20 9.45 3.01 262 - -  

B ~ O a , l ~ n ~ O a , 3 M g O , M n O  (pinakiolite) C~,-P2~/m 5.36 5.98 12.73 f l= 120 ° 34' 
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I n  a recent paper  under  this title, King & Lipscomb (1950) 
derived the geometric par t  of the molecular s tructure factor 
for an  a tom executing hindered rota t ion in the form 

M~( a, b ) = f :'~P( O) exp [ia cos O] dO. 

Their  nota t ion is used here and throughout .  P(O)dO is 
the probabi l i ty  t ha t  the a tom be in the angular range d0 
and the exponential  is the contr ibut ion from an a tom in 
this  range. They  stated,  but  did not  prove, t ha t  for an 
infinite hindering potent ia l  (b --- oo) this becomes 

Mr,(a, oo) = (I/n) ~ exp [ia cos (T + 27rm/n)], 
m=l 

where n is the  number  of minima in the potent ial  and 
is the rota t ion angle corresponding to a minimum. The 
purpose of this note is to outline a simple proof. 

For  convenience, let ¢ = # - 7 in the probabi l i ty  function: 

p(¢)  _ exp [b cos he]  . 

f : ~ e x p  [b cosna]  da 

Consider t h e  ease 0 < ¢ ~< rr/n. In consequence of the sym- 
metry,  the denominator  D m a y  be rewrit ten as 

f? D = 2n exp [b cos ~ ]  da. 

A quan t i ty  e can always be found such t ha t  0 < e < ¢, then  
these inequalities hold: 

D I> 2n exp [b cos r~]  d~ i> 2n exp [b cos he] e. 
0 

Therefore p(¢)  ~< exp [b(cos n¢  - cos he)] 
2he 

Now in the range considered, cos n ¢ -  cos ne -- - I c I, 
where c is a finite constant  for given ¢ and e. Therefore 

lim P(¢)  ~< 0. 
b--> co 

But  since by  definition P(¢)  is always positive, 

lhn P(¢)=0 (0<¢<~/n). 
b-->¢o 

B y  symmetry ,  this result applies also for a n y  ¢ ~= 2rrm/n, 
m---- 1,2,...,n. 

Also, from the definition, 

Comparison of the last  two equations wi th  the equations 
defining the Dirac &function (Dirae, 1947, p. 58) permits  
the conclusion 

~ n  P ( ¢ )  = ( i / n )  E 3(¢  - 2~mln). 
b - - >  ¢o m = l 

Replacing ¢ by  0 - ~  

lim P(O) = (l /n) ~ 3(O-T-2rrm/n).  
b-->¢o m=l 
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This result can now be inserted into the  expression for M:  

b->~limMrn(a'b) = o exp [ /acosa]  b-~lim P(a) dec, 

M~(a, oo)-(1/n)  o exp[iacosa] ~ 3 ( a - ~ ' - 2 z r m / n ) c ~  
m----1 

= (I/n) ~ exp [iacos (~,+ 2groin)I, 
m = l  

which is the  desired result.  The g-function a rgument  may ,  
of course, be replaced by  well-known limiting processes. 
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The difficulty of a t t empt ing  s t ructure  analyses of protein 
crystals by  s tudying the intensities recorded in X- ray  
diffraction studies has focussed a t ten t ion  on their  vector  
maps. This note  is concerned with  the significance, for 
these vector  maps,  of the considerable complements  of 
water  in protein crystals. 

We picture a crystalline protein as an ar ray  of molecules 
in a med ium in atomic space S. To a first approximation,  
the med ium m a y  be represented by a constant  m and the 
electron-density funct ion g(x, y, z) will take  the value m 
over the intermoleeular  regions in the cell. Let  us suppose 
tha t  the same molecules crystallize in the same med ium to 
form a series of hydrates ,  each with  its own uni t  cell. Then 
a separate g is required for each hydra te  and  the question 
arises as to a me thod  whereby  the problem of calculating 
the functions gv(x, y, z) defining the vector maps can be 
t rea ted  as a whole. A schematic representat ion of such a 
s i tuat ion is seen in Fig. 1 in which a and  c are ' crystals '  in 
which the same 'molecule '  crystallizes in the same 
' m e d i u m '  (m--- 1); in A and  C the corresponding maps in 
vector  space S~ are separately calculated. I t  is evident  
tha t  the problem is not  solved simply by using the finite 
vector  map of the common molecule, which is shown 
between A and  C. To it we should need to add the vector  
map  of the med ium and  the interactions of the medium and 
the molecule; these maps necessarily differ from crystal 
to crystal.  However ,  progress can be made  if we focus 
a t tent ion  not  on the common molecule bu t  on the common 
medium.  Accordingly we record, in b and d, the crystals 
reduced to the level of the medium,  defined by the reduced 
densi ty  functions rm(x, y, z) - g(x, y, z) - m. Each  crystal  
is now represented simply by the original molecule reduced 
to the level m, as shown between b and d. For  this reduced 
molecule, the  vector  map  is recorded, once for all. In .  
serting this map  in the appropriate  orientat ion at  given 
sets of latt ice points, the vector  maps of the reduced 
crystals are obtained as shown in B and  D. To see the  
relation between the  vector  map of a reduced crystal  and 
the vector  map of the original crystal,  we recall the 
theorem (Wrinch, 1939) tha t  the vector  maps of a crystal  
defined by  g(x, y, z) and by g(x, y, z) - Ic are represented by 
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g~(x, y, z) and  by  g~(x, y, z) -- k~, where kv is such as to make  
the total  weight  in the cell in S~ equal to the square of the 
total  weight  in the cell in S in each case. I f  there are n 
entries in the  cell, we m a y  wri te  w and w -  nk for the total  
weight  in S and  wv ( = w 2) and wv - nk,  for the total  weights 
in S,.  I t  then  follows tha t  

w ~ - n k ~ - ( w - n k )  ~, k ~ - ' k ( 2 w - n k ) .  

I n  the figure we see an example of this theorem by  com- 
paring B wi th  A and  D wi th  C. 

I t  is thus  possible to formulate  the  vector  maps for 
crystals in which molecules are a r rayed  in a constant  
med ium by  s tudying the  crystals reduced to the Ievel of 
the medium,  and  it is sufficient to record simply the vector  
maps of the reduced crystals since each is the  vector  map 
of the original crystal  reduced to a certain level. The 
examples in Fig. 1 confine a t ten t ion  to the case of one 
molecule in the uni t  cell, and  the  only pre l iminary to 
wri t ing down the vector  maps is the vector  map  of the 
molecule reduced to the m level. This procedure m a y  be 
extended to cover any  number  of molecules. When  the 
crystal  reduced to the level m comprises reduced molecules 
M1, M2, ..., it is sufficient to construct  in addi t ion the maps 
assembling vectors between each of these and  every other  
and  so obtain the synthet ic  vector  maps of proposed 
structures of a whole series of crystals. Fur ther ,  the me thod  
can be extended to deal wi th  media  at  different levels. 

To test a proposed s t ructure  of a crystal  on the intensities 
we have to compare the synthet ic  vector  map with the 
' exper imenta l '  vector  map,  which is the Fourier  t ransform 
of these intensities. All the experimental  vector  maps of 
protein crystals which are recorded in the l i terature are 
calcnlated from relative intensities and  thus  correspond 
to distributions in S on an unknown scale. I t  is possible 
to make  rough estimates of the number  of electrons in the 
uni t  cell. However ,  the scale on which the square of this 
number  is to be inserted at  the origin is unknown.  Thus in 
all these calculations I(000) is perforce t aken  to be zero. 
I t  results t ha t  all such experimental  vector  maps are 
reduced vector  maps wi th  total  weight w~ = 0 and  the dis- 
t r ibutions in S about  which they  afford information are 
reduced crystals, in which an electron densi ty  g(x, y, z ) - -  
on an unknown scale---is replaced by  r(x, y, z) = g(x, y, z) - y 
to yield a total  weight  w = 0. Hence these exper imenta l  
vector  maps relate to electron-density deviations in 
atomic space S, deviations from the average y, not  to 


