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tétrasdre d’oxygénes. Cette préférence pour une position
tétraédrique est telle que Zn ne peut entrer dans la con-
stitution des boroferrites ol tous les voisinages sont
octaédriques.

Nous terminons par un résumsé (Tableau 1) des groupes
spaciaux et paramétres des boracites étudiés jusqu'ici,
Les résultats des chercheurs japonais y sont inclus.
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Tableau 1. Groupes spaciaux et paramétres des boracites

Formule Groupe spatial a(A.) b(A.) c(A.) v(A3) d
B,0;,Fe,0;,4Fe0 D§,—Pbam 9-44 12-26 3-065 354-7 4-808
B,0,,Fe,05,4C000 9-35 12-28 3-03 348-7 5-018
B,05,Fe,04,4Ni0 9-248 1226 3-01 341-3 5-107
B,0,,Fe,05,4Cu0 9-397 1202 313 353-5 5112
B,04,Fe,0,,3Mg0,(Fe, Mg)O (ludwigite 1) 914 12-45 3-05 347 3-86
B,0;,Fe,0,,2MgO (ludwigite 1x) D¢-Pnam 9-258 9-427 3-104 270-9 3-78
B,0;,Fe,04,2Fe0 9-243 9-468 3:158 276-4 4-45
B,0;,Fe,04,2C00 9-243 9-39 3135 272-1 4-60
B,0,,Fe,0,,2Ni0 9-141 9-351 3-047 260-4 4-80
B,0;,Ti0,,3MgO (warwickite) 9-20 9-45 3-01 262 —
B,03,Mn,;0,4,3Mg0,MnO (pinakiolite) C3,—P2,/m 5-36 598 12-73 p£=120° 34’
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In a recent paper under this title, King & Lipscomb (1950)
derived the geometric part of the molecular structure factor
for an atom executing hindered rotation in the form

2
M(a,b) =f "P(0) oxp [1a cos 8]d0.
0

Their notation is used here and throughout. P(8)df is
the probability that the atom be in the angular range df
and the exponential is the contribution from an atom in
this range. They stated, but did not prove, that for an
infinite hindering potential (b= oo0) this becomes

M(a, 0)=(1/n) %:1 exp [ia cos (y + 2mm/n)],

where n is the number of minima in the potential and y
is the rotation angle corresponding to a minimum. The
purpose of this note is to outline a simple proof.

For convenience, let ¢ =6 —y in the probability function:

exp [bcosng]
27 *
f exp [bcosna)do
0

P(g)=

Consider the case 0 <@ <7/n. In consequence of the sym-
metry, the denominator D may be rewritten as

win
D= 2nf exp [bcosna]de.
0

A quantity € can always be found such that 0 <e <¢, then
these inequalities hold:

€

D>2nf exp [b cosna]da > 2n exp [b cos ne] e.
0

oxp [b(cos ng — cos ne)]

Therefore P(d)<
) s
Now in the range considered, cosng—cosne=—|c]|,
where ¢ is a finite constant for given ¢ and e. Therefore
lim P(¢)<0.
b—>w

But since by definition P(¢) is always positive,
lim P(¢)=0 (0<¢<m/n).
b—>

By symmetry, this result applies also for any ¢ +2mm/n,
m=1,2,...,n.
Also, from the definition,

2
f P(a)da=1.
0

Comparison of the last two equations with the equations
defining the Dirac d-function (Dirac, 1947, p. 58) permits
the conclusion

lim P(g)=(1/n) z'i:la<¢—2vrm/n)-
Replacing ¢ by 86—y
blim PO) = (1/n) % 8O —y —2mm/n).
—> m=1
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This result can now be inserted into the expression for M :

2
lim M(a, b)=f "exp [tacosa] lim P(a)da,
b—>c0 0 b—>c
2w n
MX(a, 00)= (l/n)f exp[iacosal X 8o —y — 2mm/n)de
0 m=1

=(1/n) f} exp [tacos (y + 2mm/n)],
1

m==
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which is the desired result. The §-function argument may,
of course, be replaced by well-known limiting processes.
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The difficulty of attempting structure analyses of protein
crystals by studying the intensities recorded in X-ray
diffraction studies has focussed attention on their vector
maps. This note is concerned with the significance, for
these vector maps, of the considerable complements of
water in protein crystals.

We picture a crystalline protein as an array of molecules
in a medium in atomie space S. To a first approximation,
the medium may be represented by a constant m and the
electron-density funection g(x,y,2) will take the value m
over the intermolecular regions in the cell. Let us suppose
that the same molecules erystallize in the same medium to
form a series of hydrates, each with its own unit cell. Then
a separate g is required for each hydrate and the question
arises as to a method whereby the problem of calculating
the functions g,(x,y,z) defining the vector maps can be
treated as a whole. A schematic representation of such a
situation is seen in Fig. 1 in which @ and ¢ are ‘crystals’ in
which the same ‘molecule’ crystallizes in the same
‘medium’ (m=1); in 4 and C the corresponding maps in
vector space S, are separately calculated. It is evident
that the problem is not solved simply by using the finite
vector map of the common molecule, which is shown
between A and C. To it we should need to add the vector
map of the medium and the interactions of the medium and
the molecule; these maps necessarily differ from crystal
to crystal. However, progress can be made if we focus
attention not on the common molecule but on the common
medium. Accordingly we record, in b and d, the crystals
reduced to the level of the medium, defined by the reduced
density functions r,(z,y,z)=g(z,y,2)—m. Each crystal
is now represented simply by the original molecule reduced
to the level m, as shown between b and d. For this reduced
molecule, the vector map is recorded, once for all. In-
serting this map in the appropriate orientation at given
sets of lattice points, the vector maps of the reduced
crystals are obtained as shown in B and D. To see the
relation between the vector map of a reduced crystal and
the vector map of the original crystal, we recall the
theorem (Wrinch, 1939) that the vector maps of a crystal
defined by g(z,y,2) and by g(x, y,z) — k are represented by

* This work is supported by the Office of Naval Research
under contract N8onr-579. This note is based upon a paper
presented at the meeting of the Crystallographic Society of
America at Ann Arbor, April 1949.

9.(%, Yy, 2) and by g,(x,y,2) —k,, where k, is such as to make
the total weight in the cell in S, equal to the square of the
total weight in the cell in § in each case. If there are n
entries in the cell, we may write w and w —nk for the total
weight in S and w, ( =w?) and w, — nk, for the total weights
in S,. It then follows that

Wy —nk,=(w—nk)?, k,=k2w—nk).

In the figure we see an example of this theorem by com-
paring B with 4 and D with C.

It is thus possible to formulate the vector maps for
crystals in which molecules are arrayed in a constant
medium by studying the crystals reduced to the level of
the medium, and it is sufficient to record simply the vector
maps of the reduced crystals since each is the vector map
of the original crystal reduced to a certain level. The
examples in Fig. 1 confine attention to the case of one
molecule in the unit cell, and the only preliminary to
writing down the vector maps is the vector map of the
molecule reduced to the m level. This procedure may be
extended to cover any number of molecules. When the
crystal reduced to the level m comprises reduced molecules
M,, M,, ..., it issufficient to construct in addition the maps
assembling vectors between each of these and every other
and so obtain the synthetic vector maps of proposed
structures of a whole series of crystals. Further, the method
can be extended to deal with media at different levels.

To test a proposed structure of a crystal on the intensities
we have to compare the synthetic vector map with the
‘experimental’ vector map, which is the Fourier transform
of these intensities. All the experimental vector maps of
protein crystals which are recorded in the literature are
calculated from relative intensities and thus correspond
to distributions in § on an unknown scale. It is possible
to make rough estimates of the number of electrons in the
unit cell. However, the scale on which the square of this
number is to be inserted at the origin is unknown. Thus in
all these calculations I(000) is perforce taken to be zero.
It results that all such experimental vector maps are
reduced vector maps with total weight w,=0 and the dis-
tributions in § about which they afford information are
reduced crystals, in which an electron density g(x, y, 2)—
on an unknown scale—is replaced by (x, y,2) = g(,y,2) =g
to yield a total weight w=0. Hence these experimental
vector maps relate to electron-density deviations in
atomic space S, deviations from the average g, not to



